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LETTER TO THE EDITOR

On the 1p Ising spin glass system with random long-ranged
interactions

J R L de Almeida
Bepartaments Je Fisica, Universidade Federal de Pernambuco, 50739 Reafe PE, Braxni

Received 12 Apnl 1991

Abstraci. We consider a one-dimensional Ising spin glass system with random interactions
of the form J; = ¢, f(v) exp{—7|1 —j]), £, being independent random vanables, General-
1zing Kac’s approach for the one-dimensional gas we formulate the solutson of the probiem
as that of cbiaimng the eigenvalues of a certamn integral equation. In patticular, as y >0
we recover the resulis of the Sherrington-Kirkpattick modet and this new approach may
give further inforination about the spin glass iransition

Long ago it was pointed out (Ashkin 2nd Lamb 1943) that leng-range order comes
from asymptotic degeneracy of the largest eigenvalue of the transfer matrix associated
with the partition function of the system. This fact occurs in a host of models and Kac
argued that this asymptotic degeneracy of the largest eigenvalue provides the mathe-
matical mechanism for phase transitions (Kac 1968, Hemmer and Lebowitz 1976). The
most notable case where this happens is in Onsager’s solution of the two-dimensional
Ising model in which the free energy is given in terms of the largest eigenvalue of the
transfer matrix (Onsager 1944). In his now classic paper (Kac 1968), Kac showed that
the Curie-Weiss and models based on weak long-range interactions despite its deficien-
ces {(dimension independent, interaction energy size dependent) are not all that different
from those based on short-range interactions, as he succeeded in obtaining the Curie-
Weiss results in terms of the largest eigenvalue of a certain linear operator associated
with a linear chain in the limit of vanishing loug-ranged interactions. In this work we
consider an Ising spin glass chain with exponentially decaying interactions, J;=
F(y)exp{—v|i —j|) whose solution is given in terms of an eigenvalue problem and
which reduces to the sk model (Sherrington and Kirkpatrick 1975) in the limit ¥ > 0.
In this way besides cbtaining the sk model from a *bona fide’ one-dimensional model
we chow that (as y-0) the spin glass transition is associated with the existence of
highly degenerate states. For one-dimensional models with other couplings see the
review articte of Binder and Young (1986).
We consider 2 one-dimensional model of N Ising spins &, = +1 with Hamiltonian
H=7Y f(y)e " e,00, S}
<
where the ¢, are identically distributed independent Gaussian random variables with
probability distribution

P(e,) =ﬁ exp(—¢e5/2) 2)
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and f{y) is some well behaved function with the Himiting form f(y)= Yyas y>0,to
ensure non-trivial results in this limit. Note that ™' can be interpreted as the effective
number of spins interacting with a given spin The quenched free energy is given by

ﬂF= —(ll'l Tr(e*ﬁy ))dv (3)

where {g),, is the average over the probability distributions in equation (2). Using the
replica method (Edwards and Anderson 1975) the free energy per spin f= F/N can
be written as
] (4)
0
2

{R*v 1
{Z"y=Tr, expi’::-z-i ZB) Ze'z""'“o'“rr“a"’a‘fj {5)
ta.8) 1

1o, .
-—ﬁFmﬁ[a—E(z)

with

where (a8} means distinct replica pairs, Tr,, is the trace over n N spins and multiplicative
constants have been drapped, and we take f(y)=+/y. Now observing that the inverse
of the matrix A, =e > {5 tridiagonal (Kac 1968) we can rewrite

(ZYy=Tr, J-nE J 1] {exp(B\/_Zx“Ba“af)
—a0 (af)

*x We®, x589, L x%) dxd® dxs? . ..dx‘ff} (6)
where
Wix,, %2, 0, 3n) = @) P ) Po(x-0x:) o Poldta—g X ) 17)
i 2
@ (x) = —==exp(~x7/2) (8)
aryy- (y~xe"*)2}
= —g M1 VE A A r
P alyy=02a(l-e)) Y exp{ 2Ai—o-7) (9)

In equation (6} we have decoupled spins on different sites at the expenses of introducing
a coupling between replicas and the random fields x7*. Following Kac’s work (Kac
1968) we write equation (6) in terms of a symmetric multidimensional kernel as

(Z")=f jh{X""} I KU, D) TT dx® del® . dxi® (10)

— ()
where
wf afy  af
K ag , ap = af [ (l)(x )Py(x iy )] ap
(b o =gt} (] £ =L oty an
h{x""}=g{x**} (I’IB)Vw(x“B) (12)

f2

gix?i= [Tro exp(B xP “0”)] (13)
(aB}
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where the trace is taken at a smgle alte over all replica spins. Performing the integrals
over the sets {dx3%}, {dx3?}, .., {dx% ..}, in (10) yields

(Z7)= J o j KN xP Y, (x5 DR{x T hixsf) TT dxp® dxsf (14)
—_ {afl)

where K'®({x“"}, {y*?}) is the S-iterate of the kernel. Since the kernel (11) is symmetric,

positive definite, and of Hilbert-Schmidt type it has a discrete set of positive eigenvalues

A;> A, > .. . and a complete set of eigenfunctions ¥, {x"?}, ¥,{x°*},. ., and K'S'({x*?},

{¥™®}) hus the representation

K¥({xL {1 = ¥ A0 {x*Chy{y=e). (15)
i=1
Substituting (15) into {10) we obtain
Zn — ad N-1 ([ . [ ugmh afl uﬁ\l
@@= T (]| weetine 1 4t 16)

By substituting (16) m (4) and taking first the thermodynamic limit we can express f
in terms of the largest eigenvatue of the kernel given by equation (11). la general
within the matricial approach the free energy is solely expressed in terms of the largest
eigenvalue while other quantities like correlation functions depend on all the eigen-
values. The elgenvalues A, are obtasined from the integral equation

oo

]
J_ J K({x°®}, {y”"})e,b{y“”}(r%}dy“ﬁ=A¢{x“‘*} (17)

or, equivalently, from the equation
o r az 1 L4 {+ 4
exp(-yV{x JE'})mcp[smlrl(Z'y) Y —:,—J exp(—yV{x"®}#{x""}
tap) OXop
=A e—-yn(n-l),’z d‘_{xaﬁ} (18)

where

yV{x*®} =4 tanh(v) 2 (x*®)—log Tr exp( By ¥ x*fg"a® ) (19)
(@8)
Eguations (17}, {18) and (19) ae the generahzation of Kac’s results for the spin glass
problem. Since for finite v the uniférm (£, = 1) model does not have phase transition
at finite T we expect the same to be true here. However, for small v systematic
perturbation expansion can be used to obtain the ¥ vspendence (v~ is the range of
the interaction) of the properties of the model.
The exponentials in equation (18) can be combined using the Baker-Hausdorfi
formu'a for operators A and B, and to order y the eigenvalue problem equation (18)
is equivalent to the multidimensional Schrddinger equation

2
{— ) aag V{x""’}}w{ “f}= [ nln n]w{w"ﬂ} (20)
(o) 0X 2
where
V{X"‘“}=l ¥ (x“ﬁ)z—llogTrexp(BJ; ¥ x""a-“o-") 21}
2 (g ¥ ()
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and F is defined through
A=g P, (22)

Of course, the largest eigenvalue A, is given by A, =exp(— Eyy) where Eg 15 the smallest
E obtained from equation (20). The minima of the potential V{x"#} are obtained from
the solutions of

B Tr{a“a' exp(ﬁf 2(0,3) x“ ﬂ)}
Trexp(By Eeam x” ’S)

or equivaiently, they occur at x** = Bgop/ vy with Gop ={c" P} as defined above and

vqxaa = —5(6“0'8) (23)

Tr{o“a® exp(B” Ziup) qaﬁﬂ' “a?)}
Trexp(B® Ziap) Gugt"@ Ay

an (24)

In the classical approximation, the minimum E is given by the minimmum of V{x*#} an¢

_ 2
-y(El,+n—(n—1'l) = mm{gw Y gag—logTr cxp(ﬁ2 ¥ q,,ﬁa“crf') } {23)
2 2 (apy {af)

Substituting (25) in (22), and using equation (4) we obtain, in the iimit ¥y~ 0,
exactly the expression of the sk free energy per particle

(aB}

,Bf—llm ! mm{ ¥ gqls-log Trexp(ﬁ 2: g0 )} {26)

We have reformulated the mean-field theory of lsing spin glasses in terms of a
chain with random long-ranged interactions in the limit of vanishing interactions. Of
course, we have a much harder task in solving equation (20) than in the evaluation
(26). On the other hand from (20) we may obtain much more information. It is well
known that equation (26) leads 10 2 paramagnetic phase above T = T, with all g,z =0
and to a spin glass phase below T, where g5 becomes a function order parameter {(as
n - 0). Thus, for finite vy, perturbation expansion around this solution can be carried
out. Above T, the potential V{x**} has a unique minimum at g,5 =0 and the solution
to (20) gives the paramagnetic solution with eigenfuncrions centred at the origin.

Below T, g, # 0, and for integer n V{x“?} develops 2" minitna {(van Hemmen
and Palmer 1979} at points |g,,] = g differing only in the sign of their components and
related by a sign symmetry (replica symmetric solution}, which is due to be time-reversal
invariance of the Hamiltonian equation {1). They form 2 cube centred with the unit
cube in the n(n ~ 1)/2-dimensional space of the variables {x"?}. Note that the present
approach, by equation {25), does not require to sum over all the minima as happens
in the steepest descent calcnlation which would lead to a divergence in the n— 0 limit
{van Hemmen and Palmer 1979).

In the ferromagnetic chain the splitting of the one-well potential into a double-well
potential telow T, is the mathematical mechanism behind the phase transition, leading
to asymptotic degeneracy of the two lowest eigenvalues as ¥ - 0 because the two wells
becomes foo far apart, and to a phase transition in this limit (Kac 1968).

In the spin glass phase the analytic continuation n-—+ ¢ to be wade from a broken
replica symmetry extremum. Or, more appropriately, from a broken replica permutation
symmetry solution. Al variables {x?} in the potential are equivalent, it has an obvious
permutation symmetry among the replica labels, and broken replica symmetry solution
amounts 1o consider the potential V{x*?} as having many more wells than those just
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given by the sign symmetry for the replica symmetric solution. The soluiions will be
on the surface of a sphere inside the unit sphere and the zero modes of the sk model
might be connected with this replica space permutation (‘rotation’) symmetry. One
has thus the possibility of having a highly degenerate ground-state (in addition to the
simple degeneracy of sign symmetry) which in turn means the existence of many
phases. This scenario seems to be the case here and has been proven in another
framework by many workers (Mézard et al 1987). We note that |4 for the ground
state is related to the degree of order of the system. For the pure ferromagnet {as y > 0)
it is just a &-function centred at the Curie-Weiss solution and we speculate that o the
spin glass system it will be equal to Parisi’s overlap probability distribution function
P{q). Probably metastable states and free energy barriers may be approached with the
present framework by exiending the Newman and Schulman arguments (Newman and
Schulman 1977) about analytic continuation of the cigenvaines. It is tempting to
consider the analytic continuation n—0 of equation (20). In this case the indices
e, 8=1,2,3,..., n 1n the variables x™® must be reparametrized into two continuous
tndices z, t€[0,1] (Jomsson 1982} and the eigenfunctions becomes a functional
[ x(z, 1)] and so the order parameter is in general a function of two variables g(z, 7).
For y- 0 equation (20) gives us back the free energy of the sk model. Otherwise the
limit seems to be not trivial. To sum up, we have extended Kac's well known lattice
gas approach to the spin glass problem.

The author thanks CNPq (Brazilian Ager.cy) for financial support.
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