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1 Phys A Math Gen. 24 (1991) L685-L689 Pnnted 8" the UK 

LEITER TO THE EDITOR 

On the ID king spin glass system with random long-ranged 
interactions 

J R L de Almeida 
Departamento .de Fistw, Untverscdade Federal de Pcmambuco, 50739 Recife PE, B n z d  

Received 12 Apnl 1991 

Abstlaei. We consider P one-dimensional lsmg spin glass system wlth random interact" 
of the form J,, = c,,J.iyJ erp(-yln -)I). E,, being independent random vanabler. General. 
iring Kac's approach far the one-du"aonal gas we formulate the soluuon of the problem 
as that of obtainma the eigenvalues of a certain integral equation. In particulu, as 7-0 
we reaver the results of the Sherrington-Klrkpatriick model and thts new approach may 
give Curther infomation about the sptn glass transition 

Long ago it was pointed out (Ashkin and Lamb 1943) that long-range order comes 
from asymptotic degeneracy of the largest eigenvalue of the transfer matrix associated 
with the partition function of the system. This fact occurs in a host of models and Kac 
argued that this asymptotic degeneracy of the largest eigenvalue provides the mathe- 
matical mechanism for phase transitions (Kac 1968, Hemmer and Lebowitz 1976). The 
most notable case where this happens is in Onsager's solution of the two-dimensional 
king model in which the free energy is given in terms of the largest eigenvalue of the 
transfer matrix (Onsager 1944). In his now classic paper (Kac 1968). Kac showed that 
the Curie-Weiss and models based on weak long-range interactions despite its deficien- 
ces (dimension independent, interaction energy size dependent) are not all that different 
from those based on short-range interactions, as he succeeded in obtaining the Curie- 
Weiss results in terms of the largest eigenvalue of a certain linear operator associated 
with a linear chain in the limit of vanishing long-ranged interactions. In this work we 
consider an king spin glass chain with exponentially decaying interactions, .I, = 
f(y)exp(-yli-jl) whose solution is given in terms of an eigenvalue problem and 
which reduces to the SK model (Sherrington and Kirkpatrick 19751 in the limit y+O. 
In this way besides cbtaining the SK model from a 'bona fide' one-dimensional model 
%e show that (as y+O) the spin glass transition is associated with the existence of 
highly degenerate states. For one-dimensional models with other couplings see the 
review article of Binder and Young (1986). 

We consider a one-dimensional model of N king spins U, = *1 wit5 Hamiltonian 

(1) H = 1 f(y) e-y''%9up, 
f v 

where the e* are identically distributed independent Gaussian random variables with 
probability distribution 
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and f ( y )  is some well behaved function with the limiting formf(y) = fi as y +  0, to 
ensure non-trivial results in this limit. Note that y-' can be interpreted as the eeective 
number of spins interacting with a given spin The quenched free energy i s  given by 

pF= -(In Tr(e-P")),, (3) 

where (g)=" is the average over the prgbability distributions in equation (2). Using the 
replica method (Edwards and &,denon 1975) the free energy per spin.f= FIN can 
be written as 

with 

where (a@) means distinct replicapairs,Tr, isthetrace over nN spinsandmultiplicative 
ConFtants have been dropped, and we take f( y )  = fi. Now observing that the inverse 
of the matrix A, = e-''''-" i s  triehgonal (Kac 1968) we can rewrite 

where 

In equation (6) we have dewupled spins on different sites at the expenses of introducing 
a coupling between replicas and the random fields xpp. Following Kac's work (Kac 
1968) we write equation (6) in terms of a symmetric multidimensional kernel as 
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where the trace is taken at a single site over all r-plica spins. Performing the integrals 
over the sets {dx% {dxz'l, . . , (dx'i'-J, in (10) yields 

(Z")=IY -m . . . I K ' " ~ " ~ { x ~ ' ~ . { ~ ~ } ) h { x ~ ~ ~ h { x ~ ~ }  (-01 n dxf' dx$ (14) 

where K'sl({x"p],{y~B})is theS-iterateofthekernel. Sincethe kernel (11) issymmetric, 
positive definite, and of Hilbert-Schmidt type it has a discrete set of positive eigenvalues 
A ,  > A I > .  . .andacompleiesetofeigenfunctions *,{x"'), Q2{xaP],  . . ,and K ' " ( { X " ~ } ,  
{y"')) has the representation 

m 

K'S'((r"P}, {ye'!) = I: A~+,,(X"~}S{~"'). (15) ,=, 
Substituting (15) into (IO) we obtain 

By substituting (16) in (4) and taking first the thermodynamic limit we can express f 
in terms of the largest eigenvalue of the kernel given by equation (11). In general 
within the matricial approach the free energy is solely expressed in terms ofthe largest 
eigenvalue whiie other quantities like correlation functions depend on all the eigen- 
values. The eigenvalues A, are obtained from the integral equation 

1,. . .I K({x"I, { Y " ~ ~ ) ~ { Y " ' ~  I1 dymB = A${x-@} (17) 
1001 

or, equivalently, from the equation 

a* - 
exp(-yV{xa8)) exp sinh(2y) 1 --] e~p(-yV{x"})+{x~~] 

1001 J d o  
*{X"'I (18) - A  - e-mln- I1 /z  

where 

yV{xa8)=~~tanh(y) I: (x"')'-~Og~rexp P y  1 x U U . (19) 

Equations (17), (18) and (19) are the generalization of Kac's results for the spin glass 
problem. Since for finite y the unifarm ( E ~  = I )  model does not have phase transition 
at finite T we expect the same to be true here. However, for small y systematic 
perturbation expansion can be used to oblain the y uependence (y-' is the range of 
the interaction) of the propenies of the model. 

The exponentials in equation (18) can be combined using the Baker-Hausdorff 
formu'a for operators A and B, and to order y the eigenvalue problem equation (IS) 
is equivalent to the multidimensional Schradinger equation 

1.81 i 108) *' * 

where 
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and E is defined through 
A 

Of course, the largest eigenvalue A ,  is given by A,  =exp(-Eoy) where Eo is the smallest 
E obtained from equation (20). The minima of the potential V{x@) are obtained from 
the solutions of 

or equivalently, they occur at xmB = p q m E / f i  with qmp = ( u " ~ ~ )  as defined above and 

In the classical approximation, the minimum E is given by the minimum of V { x m E )  and 

Substituiing (25) in (22), and using equation (4) we obtain, in the limit y+O, 

pj=lim-min - q&-logTrexp p' 1 qOpu"ue )} . (26) 

We taave reformulated the mean-field theory of lsing spin glasses in terms of a 
chain with random lung-ranged interactions in the limit of vanishing interactions. Of 
course, we have a much harder task in solving equation (20) than in the evaluation 
(26). On the other hand from (20) we may obtain much more information. It is well 
known that equation (26) leads to a paramagnetic phase above T = T, with all qmE = 0 
and to a spin glass pbase below T, where qES becomes a function order parameter (as 
n -to). Thus, for finite y, perturbation expansion around this solution can be carried 
out. Above T, the potential V{x") has a unique minimum at qaE = O  and the solution 
to (20) gives the paramsgnetic solution with eigenfunclions centred at the origin. 

Below T,, qmP # 0, and for integer n V{xmP} develops 2"-' minima (van Hemmen 
and Palmer 1979) at points lqmEl = q differing only in the sign of their components and 
related by a sign symmetry (replica symmetricsoiution), which is due to be time-reversal 
invariance of the Hamiltonian equation (1). They form a cube cectred with the unit 
cube in the n(n - I)/Z-dimensional space of the variables {xwP} .  Note that the present 
approach, by equation (25), does not require to sum over all the minima as happens 
in the steepest descent calculation which would lead to a divergence in the n + O  limit 
(van Hemmen and Palmer 1979). 

In the ferromagnetic chain the splitting of the one-well potential into a double-well 
potential Pelow T, is the mathematical mechanism behind the phase transition, leading 
to asymptotic degeneracy of the two lowest eigenvalues as y-0 because the two wells 
becomes too far apart, and to a phase transition in this limit (Kac 1968). 

In the spin glass phase the analytic continuation n-0 to be made from a broken 
replica symmetry extremum. Or, more appropriately, from a broken replica permutation 
symmetry solution. AI1 variables fx"'} in the potential are equivalent, it has an obvious 
permutation symmetry among the replica labels, and broken replica symmetry solution 
amounts to consider the potential V{x"} as having many more wells than those just 

exactly the expression of the SK free energy per particle 

"-0 n . f822rm#) t ( m e )  
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given by the sign symmetry for the replica symmetric solution. The solutions will be 
on the surface of a sphere inside the unit sphere and the zero modes of the SK model 
might be connected with this replica space permutation (‘rotation’) symmetry. One 
has thus the possibility of having a highly degenerate ground-state (in addition to the 
simple degeneracy of sign symmetry) which in tum means the existence of many 
phases. This scenario seems to be the case here and has been proven in another 
framework by many workers (MCzard el al 1987). We note that for the ground 
state is related to the degree of order of the system. For the pure ferromagnet (as y - 0 )  
it is just a 8-function centred at the Curie-Weiss solution and we speculate that in the 
spin glass system it will be equal to Parisi’s overlap probability distribution function 
P(4). Probably metastable states and free energy barriers may be approached with the 
present framework by extending the Newman and Schulman arguments (Newman and 
Schulman 1977) about analytic continuation of the eigcnvalues. It is tempting to 
consider the analytic continuation n+O of equation (20). In this case the indices 
a, p = 1,2.3,. . . , R in the variables XI* must be reparametrized into two continuous 
indices z, f E [0,1] (Jonsson 1982) and the eigenfunctions becomes a functional 
*[x(z, I)] and so the order parameter is in general a function of two variables q(z, 1).  

For y e 0  equation (20) gives us back the free energy of the SK model. Otherwise the 
limit seems to be not trivial. To sum up, we have extended Kac’s well known lattice 
gas approach to the spin glass problem. 

The author thanks CNPq (Brazilian Agewy) for financial support. 
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